IP Forwarding

Covers the principles of end-to-end datagram delivery in IP networks.

Orientation

- Internet is a collection of networks
- IP provides an end-to-end delivery service for IP datagrams between hosts
- The delivery service is realized with the help of IP routers

Delivery of an IP datagram

- View at the data link layer layer:
 - Internetwork is a collection of LANs or point-to-point links or switched networks that are connected by routers

Delivery of an IP datagram

- View at the IP layer:
 - An IP network is a logical entity with a network number
 - We represent an IP network as a "cloud"
 - The IP delivery service takes the view of clouds, and ignores the data link layer view

Tenets of end-to-end delivery of datagrams

The following conditions must hold so that an IP datagram can be successfully delivered

- The network prefix of an IP destination address must correspond to a unique data link layer network (=LAN or point-to-point link or switched network). (The reverse need not be true!)
- Routers and hosts that have a common network prefix must be able to exchange IP datagrams using a data link protocol (e.g., Ethernet, PPP)
- 3. Every data link layer network must be connected to at least one other data link layer network via a router.

Routing tables

- Each router and each host keeps a **routing table** which tells the router how to process an outgoing packet
- Main columns:
 - 1. **Destination address:** where is the IP datagram going to?
 - 2. Next hop or interface: how to send the IP datagram?
- Routing tables are set so that a datagram gets closer to the its destination every hop

Destination **Next Hop** 10.1.0.0/24 direct 10.1.2.0/24 direct Routing table of a host or router 10.2.1.0/24R4 10.3.1.0/24 direct IP datagrams can be directly delivered 20.1.0.0/16 R4 ("direct") or are sent to a router ("R4") 20.2.1.0/28 R4

Delivery with routing tables

Delivery of IP datagrams

- There are two distinct processes to delivering IP datagrams:
 - 1. Forwarding: How to pass a packet from an input interface to the output interface?
 - 2. **Routing:** How to find and setup the routing tables?

- Forwarding must be done as fast as possible:
 - on routers, is often done with support of hardware
 - on PCs, is done in kernel of the operating system
- Routing is less time-critical
 - On a PC, routing is done as a background process

Processing of an IP datagram in IP

Processing of an IP datagram in IP

- Processing of IP datagrams is very similar on an IP router and on a host
- Main difference: "IP forwarding" is enabled on router and disabled on host

• IP forwarding enabled

 \rightarrow if a datagram is received, but it is not for the local system, the datagram will be sent to a different system

IP forwarding disabled

 \rightarrow if a datagram is received, but it is not for the local system, the datagram will be discarded

Processing of an IP datagram at a router

Receive an IP datagram

- 1. IP header validation
 - 2. Process options in IP header
 - 3. Parsing the destination IP address
 - 4. Routing table lookup
 - 5. Decrement TTL
 - 6. Perform fragmentation (if necessary)
 - 7. Calculate checksum
 - 8. Transmit to next hop
 - 9. Send ICMP packet (if necessary)

Routing table lookup

- When a router or host needs to transmit an IP datagram, it performs a routing table lookup
- Routing table lookup: Use the IP destination address as a key to search the routing table.
- Result of the lookup is the IP address of a next hop router, or the name of a network interface

Destination address	Next hop
network prefix	IP address of
Oľ	next hop router
host IP address	
ОГ	Oľ
loopback address	
Oľ	Name of a
default route	network
	interface

Type of routing table entries

• Network route

- Destination address is a network address (e.g., 10.0.2.0/24)
- Most entries are network routes

Host route

- Destination address is an interface address (e.g., 10.0.1.2/32)
- Used to specify a separate route for certain hosts

Default route

- Used when no network or host route matches
- The router that is listed as the next hop of the default route is the default gateway (for Cisco: "gateway of last resort)

Loopback address

- Loopback address: 127.0.0.1
- The next hop lists the loopback (lo0) interface as outgoing interface

Longest Prefix Match

 Longest Prefix Match: Search for the routing table entry that has the longest match with the prefix of the destination IP address 128.143.71.21

Destination address	Next hop	
10.0.0/8	R1	
128.143.0.0/16	R2	
128.143.64.0/20	R3	
128.143.192.0/20	R3	
128.143.71.0/24	R4	
128.143.71.55/32	R3	
default	R5	

1. Search for a match on all 32 bits

- 2. Search for a match for 31 bits
- 32. Search for a mach on 0 bits

Host route, loopback entry \rightarrow 32-bit prefix match Default route is represented as 0.0.0.0/0 \rightarrow 0-bit prefix match The longest prefix match for 128.143.71.21 is for 24 bits with entry 128.143.71.0/24

Datagram will be sent to R4

Route Aggregation

- Longest prefix match algorithm permits to aggregate prefixes with identical next hop address to a single entry
- This contributes significantly to reducing the size of routing tables of Internet routers

Destination	Next Hop	Destination	Next Hop
10.1.0.0/24	R3	10.1.0.0/24	R3
10.1.2.0/24	direct	10.1.2.0/24	direct
10.2.1.0/24	direct	10.2.1.0/24	direct
10.3.1.0/24	R3	10.3.1.0/24	R3
20.2.0.0/16	R2	20.0.0/8	R2
20.1.1.0/28	R2		

Routing table manipulations with ICMP

- When a router detects that an IP datagram should have gone to a different router, the router (here R2)
 - forwards the IP datagram to the correct router
 - sends an ICMP redirect message to the host
- Host uses ICMP message to update its routing table

ICMP Router Solicitation ICMP Router Advertisement

Router Discovery Protocol

- After bootstrapping, a Host broadcasts or multicast (address 224.0.0.2) an ICMP Router Solicitation Messages.
- 2. In response, Routers send an **ICMP router advertisement** message
- 3. Also, routers periodically broadcast **ICMP router advertisement**
- 4. The host chooses the **first message** it receives and adds that router to its routing table.

