TCP and UDP
Layer 3 of the TCP/IP protocol stack. Transport layer

l. Introduction.

On a single device, people can use multiple services such as e-mail, the web, and instant
messaging to send messages or retrieve information. Applications such as e-mail clients, web
browsers, and instant messaging clients allow people to use computers and networks to send
messages and find information.

Data from each of these applications is packaged, transported, and delivered to the appropriate
server daemon or application on the destination device. The processes described in the OSI
Transport layer accept data from the Application layer and prepare it for addressing at the
Network layer. The Transport layer is responsible for the overall end-to-end transfer of
application data. The role of the Transport layer is encapsulating application data for use by the
Network layer.

The Transport layer also encompasses these functions:

a). Enables multiple applications to communicate over the network at the same time on a single
device

b). Ensures that, if required, all the data is received reliably and in order by the correct
application

c). Employs error handling mechanisms

OSI - Transport Layer

Application

DATA

APPLICATION l T Presentation

Session

The Transport layer prepares
application data for transport over the Transport Transport
network and processes network data :

Network

for use by applications.
Data Link

MNETWORK DATA T

Physical

ll. Purpose of Transport Layer

1. Tracking the individual communication between applications on the source and destination hosts:
Any host may have multiple applications that are communicating across the network. Each of
these applications will be communicating with one or more applications on remote hosts. It is the
responsibility of the Transport layer to maintain the multiple communication streams
between these applications.

Tracking the Conversations

INSTANT “~n= " MULTIPLE WEB PAGES
MESSAGING _ ©== | o | _

E-MAIL

IP TELEPHONY

To: you@example.com (VOIP)

From: me@example.com
Subject: E-mail -

STREAMING VIDEO

Network

The Transport layer segments the data and manages the separation of data for different
applications. Multiple applications running on a device receive the correct data.

2) Segmenting data and managing each piece: As each application creates a stream data to be sent
to a remote application, this data must be prepared to be sent across the media in manageable
pieces. The Transport layer protocols describe services that segment this data from the
Application layer. This includes the encapsulation required on each piece of data. Each piece of
application data requires headers to be added at the Transport layer to indicate to which
communication it is associated.

Segmentation

INSTANT o= " " MULTIPLE WEB PAGES
MESSAGING @ws [=¥ | :

E-MAIL

IP TELEPHONY

To: you@example.com (VOIP)

From: me@example.com
Subject: E-mail ~tf-

STREAMING VIDEO

The Transport layer divides the data into segments that are easier to manage and transport.

3) Reassembling the segments into streams of application data: At the receiving host, each piece of data may
be directed to the appropriate application. Additionally, these individual pieces of data must also be
reconstructed into a complete data stream that is useful to the Application layer. The protocols at the
Transport layer describe the how the Transport layer header information is used to reassemble the data
pieces into streams to be passed to the Application layer.

INSTANT = o= ™ " MULTIPLE WEB PAGES
MESSAGING @ :

E-MAIL "

& IP TELEPHONY
(VOIP)

Segmentatlon allows session K‘ “/J STREAMING VIDEO

it g — multiple
appllcatlons can use the
-q segmentation facilitates data carriage
_q by the lower network layers.

network at the same tlmo
— i can be performed on the data

in the segmem to check if the segment was
changed during transmission.

To: you@example.com
From: me@example.com
Subject: E-mail

4) Identifying the different applications: In order to pass data streams to the proper applications, the Transport
layer must identify the target application. To accomplish this, the Transport layer assigns an
application an identifier. The TCP/IP protocols call this identifier a port number. Each software process
that needs to access the network is assigned a port number unique in that host. This port number is
used in the transport layer header to indicate to which application that piece of data is associated.

lll. Reliable Communication

Different applications have different requirements for their data, and therefore different Transport protocols
have been developed to meet these requirements. A Transport layer protocol can implement is a
method to ensure reliable delivery of the data. In networking terms, reliability means ensuring that
each piece of data that the source sends arrives at the destination. At the Transport layer the

three basic operations of reliability are:

a) tracking transmitted data
b) acknowledging received data
c) retransmitting any unacknowledged data

This requires the processes of Transport layer of the source to keep track of all the data pieces
of each conversation and the retransmit any of data that did were not acknowledged by
the destination. The Transport layer of the receiving host must also track the data as it is
received and acknowledge the receipt of the data.

These reliability processes place additional overhead on the network resources due to the
acknowledgement, tracking, and retransmission. To support these reliability operations,
more control data is exchanged between the sending and receiving hosts. This control
information is contained in the Transport Layer header.

2. Determining the Need for Reliability

Applications, such as databases, web pages, and e-mail, require that all of the sent data arrive at
the destination in its original condition, in order for the data to be useful. Any missing data could cause a
corrupt communication that is either incomplete or unreadable. Therefore, these applications are designed to
use a Transport layer protocol that implements reliability. The additional network overhead is considered to be
required for these applications.

Other applications are more tolerant of the loss of small amounts of data. For example, if one or two
segments of a video stream fail to arrive, it would only create a momentary disruption in the stream. This may
appear as distortion in the image but may not even be noticeable to the user.

Transport Layer Protocols

/ =4 ' m_ "
: . 12 -k
TCP/IP Model
+ IP Telephony + SMTP/POP (Email)
+ Streaming Video OSL Modsl * HTTP
Application
Required Protocol Presentation Apphcation
Properties Required Protocol
+ Fast Session Properties
* Low overhead =_ + Reliable
+ Does not require r Transport > Transport + Acknowledge data
acknowledgements L + Resend lost data
» Does not resend Retwodk + Delivers datain
lost data Internet order sent
+ Delivers data as it Data Link
arrives
Physical Network Access

Application developers choose the appropriate Transport Layer protocol based on the
nature of the application.

IV. TCP and UDP Protocols

The two most common Transport layer protocols of TCP/IP protocol suite are Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP). Both protocols manage the communication of multiple
applications. The differences between the two are the specific functions that each protocol implements.

User Datagram Protocol (UDP)

UDP is a simple, connectionless protocol, described in RFC 768. It has the advantage of providing
for low overhead data delivery. The pieces of communication in UDP are called datagrams. These datagrams
are sent as "best effort" by this Transport layer protocol.

Applications that use UDP include:
Domain Name System (DNS)
Video Streaming
Voice over IP (VolP)

Transmission Control Protocol (TCP)

TCP is a connection-oriented protocol, described in RFC 793. TCP incurs additional overhead to gain
functions. Additional functions specified by TCP are the same order delivery, reliable delivery, and flow control.
Each TCP segment has 20 bytes of overhead in the header encapsulating the Application layer data, whereas
each UDP segment only has 8 bytes of overhead.

Applications that use TCP are:
Web Browsers
E-mail
File Transfers

V. Transmition Control Protocol (TCP)

The reliability of TCP communication is performed using connection-oriented sessions. Before a host using
TCP sends data to another host, the Transport layer initiates a process to create a connection with the
destination.

* Establishes a session between source host and source destination (this ensures that each host is
prepared and aware for the connection).

* The destination host sends acknowledgements to the source for the segments that it receives.

* As the source receives an acknowledgement, it knows that the data has been successfully
delivered and can quit tracking that data.

* If the source does not receive an acknowledgement within a predetermined amount of time, it
retransmits that data to the destination.

* The establishment of the sessions creates overhead in the form of additional segments being
exchanged.

* There is also additional overhead on the individual hosts created by the necessity to keep track of
which segments are awaiting acknowledgement and by the retransmission process.

TCP Segment Structure

TCP Header

Bitoffset o 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22|23 24 25 26 27 28 29 /30 31

0 Source port Destination port
32 Sequence number
64 Acknowledgment number
c|e|lufa|p|[R|[S|F
96 Data offset | Reserved w C R C |8 |8 Y I Window Size
R|E|G|K|H|T|N|N
128 Checksum Urgent pointer

160 Options (if Data Offset > 5)

* Source port (16 bits) — identifies the sending port
* Destination port (16 bits) — identifies the receiving port
* Sequence number (32 bits) — has a dual role

* If the SYN flag is set, then this is the initial sequence number. The sequence number of the actual first data byte (and the
acknowledged number in the corresponding ACK) will then be this sequence number plus 1.

* If the SYN flag is clear, then this is the sequence number of the first data byte
* Acknowledgment number (32 bits)

* Data offset (4 bits) — specifies the size of the TCP header in 32-bit words

* Reserved (4 bits) — for future use and should be set to zero

* Flags (8 bits) (aka Control bits) — contains 8 1-bit flags

* Window (16 bits) — the size of the receive window, which specifies the number of bytes that the receiver is currently willing to
receive.

* Checksum (16 bits) — The 16-bit checksum field is used for error-checking of the header and data

* Urgent pointer (16 bits) — if the URG flag is set, then this 16-bit field is an offset from the sequence number indicating the last
urgent data byte.

Clients Sending TCP Requests

HTTP response: Server SMTP Respbonse:
Source Port 80 Source Port 25

Destination Port 49‘\2 \Des Anatlon Port 51152

Client 1 / TE Pkl \ Client 2

SMTP: Port 25

g \ Client requests to TCP g
server

HTTP Request: /" SMTP Request:

Source Port: 49152 Server response to TCP clients use Source Port: 51152

Destination Port: 80 random port numbers as the Destination Port: 25

destination port.

TCP Connection Establishment

TCP Connection Establishment and Termination
A B

@ Send SYN
(SEQ=100 CTL=SYN) \). SYN received
/ Send SYN,ACK @
SYN received (SEQ=300 ACK=101 CTL=SYN,ACK)
Established

(SEQ=101 ACK=301 CTL=ACK| 3

A sends SYN request to B
B sends ACK response and SYN request to A
A sends ACK response to B

TCP Connection Termination

TCP Connection Establishment and Termination
A B

= -

@ Send FIN
\: FIN received

< | SendAcK @
ACK received
- Send FIN @
FIN received /
@ Send ACK[——___
- ACK received

A sends FIN request to B

B sends ACK response to A
B sends FIN request to A
A sends ACK response to B

TCP 3-way Handshake (SYN)

13 6.201109 192.168.254.25%4 sl R A b DNS Standard query r.
A4 56202100 = T0r LT Es I N, 192.168.254.254 TCP 1069 > http [SYn
15 6.202513 192.168.254.254 10:1.1.1 EGE http > 1069 [SYN
16 6.202543 10.1.1.1 192.168.254.254 TCP 1069 > http [ACK
17 & INIAST 1A 1 1 1 107 1AR 784 754 HTTD AET / WTTOD/A 1

Frame 14 (62 bytes on wire, 62 bytes captured)
% Ethernet II, Src: Quantaco_bd:0c:7¢ (00:c0:9f:bd:0c:7¢), Dst: Cisco_cf:66:4(
% Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 192.168.254.254 (192.168.:
= Transmission Control Protocol, Src Port: 1069 (1069), Dst Port: http (80), ¢
Source port: 1069 (1069)
Destination port: http (80)
Sequence number: 0 (relative sequence number)
Header length: 28 bytes
= Flags: 0x02 (SYN)

13 = Ccongestion window Reduced (CwR): NOT set
" i = ECN-Echo: NOt set
.0. = Urgent: NoOt set
i e e Aol Adcmmmt o WAt - ,_l[v
4 | 3

Protocol Analyzer shows initial client request for session in frame 14 ‘

TCP segment in this frame shows:
+ SYN flag set to validate an initial Sequence number
+ Randomized sequence number valid (relative value is 0)
+ Random source port 1069
+ Well known destination port is 80 (HTTP port) indicates web server (httpd)

TCP 3-way Handshake (SYN, ACK)

15 ©.2011UY 19Z.108.254.254 IV. 113 DNS Stanoara query|,
14 6.202100 10.1.1.1 192.168.254.254 TCP 1069 > http [V
15 6.202513 192.168.254.254 10.1.1.1 TCP http > 1069 [S
16 6.202543 10.1.1.1 192.168.254.254 TCP 1069 > http [AC
17 6.202651 10.1.1.1 192.168.254.254 HTTP GET / HTTP/1.1

% Frame 15 (b2 bytes on wire, b2 bytes captured)
Ethernet II, Src: Cisco_cf:66:40 (00:0c:85:cf:66:40), Dst: Quantaco_bd:0c:
% Internet Protocol, Src: 192.168.254.254 (192.168.254.254), Dst: 10.1.1.1 C
= Transmission Control Protocol, Src¢ Port: http (80), Dst Port: 1069 (1069),
Source port: http (80)
pestination port: 1069 (1069)
sequence number: 0 (relative sequence number)
Acknowledgement number: 1 (relative ack number)
Header length: 28 bytes
= Flags: 0x12 (SYN, ACK)
0... ... = Congestion window Reduced (CWR): NOT set
.0.. = ECN-Echo: NoOt set E

e L o o - - -

| s J

A protocol analyzer shows server response in frame 15 ’

ACK flag set to indicate a valid Acknowledgement number

Acknowledgement number response to initial sequence number as relative value of 1
SYN flag set to indicate the Initial sequence number for the server to client session
Destination port number of 1069 to corresponding to the clients source port

Source port number of 80 (HTTP) indicating the web server service (httpd)

L] L] L] . L]

TCP 3-way Handshake (ACK)

13 6.201109 192.168.254.254 1 8 0 B0 B DNS Standard query re .
14 6.202100 10.1.1:.1 192.168.254.254 TCP 1069 > http [SYN]
http > 1069 [SYN,

15 6.202513 192.168.254.254 10010 TCP

0 0.202 i e e Y 152.168.254.254 TCP 1069 > http |ACK[
L2026 5L RL0NL AL 192.168.254.254 HTT GET / HTTP/1.1

Frame 16 (54 bytes on wire, 54 bhytes captured)

Ethernet II, Src: QuantaCo_bd:0c:7c (00:c0:9f:bd:0c:7¢c), Dst: Cisco_cf:66:40
Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 192.168.254.254 (192.168.25
= Transmission Control Protocol, Src Port: 1069 (106%9), Dst Port: http (80), Se

Source port: 1069 (1069)
Destination port: http (80)
Sequence number: 1 (relative sequence number)
Acknowledgement number: 1 (relative ack number)
Header length: 20 bytes
= Flags: 0x10 (ACK)
055 Congestion window Reduced (CwR): NOT set
% # A ECN-Echo: NOt set
. 0. Urgent: NOt set

Protocol Analyzer shows client response to session in frame 16 '

The TCP segment in this frame shows:
+ ACK flag set to indicate a valid Acknowledgement number

+ Acknowledgement number response to initial sequence number as relative value of

1
« Source port number of 1069 to corresponding

» Destination port number of 80 (HTTP) indicating the web server service (httpd)

TCP Session Termination (FIN)

19 6,203857 102.168.254.254 30.1.3:2 HTTP HTTP/1.1 200 OK (i
20 6,203876 192.168.254.25%4 051515 TCP http > 1069 [FIN,
21 6.2038%99 10.1.1.1 192.168.254.254 TCP 1069 > http [ACK]
22 6.204139 10.1.1.1 192.168.254.254 TCP 1069 > http [FIN,
23 6.204416 192.168.254.254 F0: 512 TCP http > 1069 [ACK] -
214 & AO2AAR] TN 1T 1 1 107 1T6&R2 72784 T84] NI~ crancdard miarag A ¢

=

http (80)

Frame 20 (60 bytes on wire, 60 bytes captured)
. Ethernet II, Src¢: Cisco_cf:66:40 (00:0¢:85:¢cf:66:40), Dst: Quantaco_bd:0c:7¢
 Internet Protocol, sSrc: 192.168.254.254 (192.168.254,254), Dst: 10.1.1.1 (10,
. Transmission Control Protocol, sSr¢ Port: http (80), Dst Port: 1069 (1069), Se
Source port:

pestination port: 1069 (1069)
Sequence number: 440 (relative sequence number)
Acknowledgement number: 414 (relative ack number)
Header length: 20 bytes

- Flags: Ox11 (FIN, ACK)

== 0... = Congestion window Reduced (CwR): NOt set rﬁi‘
< >
A protocol analyzer shows details of + The destination and source ports

frame 20, TCP FIN request. « The header field contents and values

TCP Session Termination (ACK)

19 6.203857
20 6.203876
21 6.203899
22 6.204139

23 6.204416
74 A AO2ARAR

192.168.254.254
192.168.254.254
E0VEL
10.1.1.1

192.168.254.254
(B T

5 2 [R s
0.13.1.X
192.168.254.254
192.168.254.254

30.3.1.3
107 1AR 264 264

HTTP
TGE
TEP
TCP
TCP

NS

HTTP/1.1 200 OK (.
http > 1069 [FIN,
1069 > http [ACK]
1069 > http [FIN,
http > 1069 [ACK]

ctrandard marv A

I - -

*

‘ A\

’ 4

« A protocol analyzer shows details of

Frame 21 (54 bytes on wire, 54 bytes captured)
Ethernet II, Src: QuantaCo_bd:0c:7c (00:c0:9F:bd:0c:7¢), Dst: Cisco_cf:66:40
Internet Protocol, src: 10.1.1.1 (10.1.1.1), Dst: 192.168.254.254 (192.168.2F5
Transmission Control Protocol, Src Port: 1069 (1069), Dst Port: http (80), Se -
Source port: 1069 (1069)
Destination port: http (80)

Sequence number: 414

Acknowledgement number: 441
Header Tength: 20 bytes
= Flags: 0x10 (ACK)

M

(relative sequence number)
(relative ack number)

- rannactinn wWindow badicad (fewp e

frame 21, TCP ACK response.

KAt <at

v

—

« The destination and source ports
+ The header field contents and values

TCP Segment Reassembly

When services send data using TCP, segments may arrive at their destination out of order. For the

original message to be understood by the recipient, the data in these segments is reassembled into the original
order. Sequence numbers are assigned in the header of each packet to achieve this goal.

TCP Segments Are Re-Ordered at the Destination

Different segments may
take different routes.

- 4 Segment 1 Segment 1 TCP re- Segment 1
Data > orders the
2 different to the
) I:_)atla |_s Segment 3 routes to the Segment 6 original Segment 3
divided into < - destination, < - order. % i
seqgments. egmen segments egmen egmen
arrive out of
S t5 S td4 s t5
egmen srden: egmen egmen
Segment 6 Segment 3 Segment 6

TCP Flow Control

* TCP also provides mechanisms for flow control. Flow control assists the reliability of TCP
transmission by adjusting the effective rate of data flow between the two services in the session. When the
source is informed that the specified amount of data in the segments is received, it can continue sending more
data for this session.

* This Window Size field in the TCP header specifies the amount of data that can be transmitted
before an acknowledgement must be received. The initial window size is determined during the session startup
via the three-way handshake.

* TCP feedback mechanism adjusts the effective rate of data transmission to the maximum flow
that the network and destination device can support without loss. TCP attempts to manage the rate of
transmission so that all data will be received and retransmissions will be minimized.

TCP Segment Acknowledgement and Window Size

Sender Window size = 3000 Receiver
1500 bytes
Sequence number 1 " 3 Receive 1-1500
1500 bytes
Sequence number 1501 s > Receive 1501 - 3000
Receive Acknowledge - Acknowledgement number 3001
1500 bytes ’
Sequence number 3001 2 Receive 3001 - 4500
1500 bytes .
Sequence number 4501 3 Receive 4501 - 6000
Roecelve Acknowledge = Acknowledgemeant humber 6001

The window size determines the nhumber of bytes sent before an
acknowledgment is expected.
The acknowledgement number is the number of the next
expected byte.

Reducing Window Size

* Another way to control the data flow is to use dynamic window sizes. When network resources are
constrained, TCP can reduce the window size to require that received segments be acknowledged more
frequently. This effectively slows down the rate of transmission because the source waits for data to be
acknowledged more frequently.

* The TCP receiving host sends the window size value to the sending TCP to indicate the number
of bytes that it is prepared to receive as a part of this session. If the destination needs to slow down the rate of

communication because of limited buffer memory, it can send a smaller window size value to the source as part
of an acknowledgement.
TCP Congestion and Flow Control

Sender Window slze = 3000 Receiver

1500 bytes
Sequence number 1 L 3 Receive 1 -1500
1500 b
Sequence number 1501 ytes > Rocelve 1501 - 3000
Recelve Acknowledge - Acknowledgement humber 3001
1500 bytes Segment 3 Is lost becausse of
Sequence number 3001 X(congestlon at the recelver.
1500 bytes -
Sequence number 4501 3 Receive 4501 - 6000
Recelve Acknowledge - Acknowledgement humber 3001

Wihdow slze = 1500

If segments are lost because of congestion, the Receiver will
acknowledge the last received sequential segment and reply
with a reduced window size.

VI. UDP Protocol

UDP is a simple protocol that provides the basic Transport layer functions. It much lower overhead
than TCP, since it is not connection-oriented and does not provide the sophisticated retransmission,
sequencing, and flow control mechanisms.

This does not mean that applications that use UDP are always unreliable. It simply means that
these functions are not provided by the Transport layer protocol and must be implemented elsewhere if
required.

Although the total amount of UDP traffic found on a typical network is often relatively low, key
Application layer protocols that use UDP include:

Domain Name System (DNS)

Simple Network Management Protocol (SNMP)
Dynamic Host Configuration Protocol (DHCP)
Routing Information Protocol (RIP)

Trivial File Transfer Protocol (TFTP)

Online games

Some applications, such as online games or VolP, can tolerate some loss of some data. If these
applications used TCP, they may experience large delays while TCP detects data loss and retransmits data.
These delays would be more detrimental to the application than small data losses. Some applications, such as
DNS, will simply retry the request if they do not receive a response, and therefore they do not need TCP to
guarantee the message delivery. The low overhead of UDP makes it very desirable for such applications.

UDP Datagram Structure

bits 0-15 16 - 31

0 Source Port Destination Port
32 Length Checksum
64 Data

* Source port: This field identifies the sending port when meaningful and should be assumed to be
the port to reply to if needed. If not used, then it should be zero.

* Destination port: This field identifies the destination port and is required.

* Length: A 16-bit field that specifies the length in bytes of the entire datagram: header and data.
The minimum length is 8 bytes since that's the length of the header. The field size sets a theoretical limit of
65,535 bytes (8 byte header + 65527 bytes of data) for a UDP datagram. The practical limit for the data length
which is imposed by the underlying IPv4 protocol is 65,507 bytes.

* Checksum: The 16-bit checksum field is used for error-checking of the header and data. The
algorithm for computing the checksum is different for transport over IPv4 and IPv6. If the checksum is omitted
in IPv4, the field uses the value all-zeros. This field is not optional for IPv6.

UDP Datagram Reassembly

UDP: Connectionless and Unreliable

Different datagrams may
take different routes.

\'\.
\\
\‘\.
\‘\.
: -~ \‘kx :
Datagram 1 Datagram 1 Out of order
Data > datagrams are
Datagram 2 Having taken Datagram 2 not re-ordered.
different
= I?:;tlz i:s Datagram 3 routes to the Datagram 6
d'::a era:r': :O Datagram 4 AR Snatons Datagram 5 Lost datagrams
9 - dz!tagrams are not re-sent.
Datagram 5 Apmve outiof Datagram 4
order.
— Datagram 6

VII. Ports

* The TCP and UDP based services keep track of the various applications that are communicating.
To differentiate the segments and datagrams for each application, both TCP and UDP have header fields that
can uniquely identify these applications.These unique identifiers are the port numbers.

* In the header of each segment or datagram, there is a source and destination port. The source
port number is the number for this communication associated with the originating application on the local host.
The destination port number is the number for this communication associated with the destination application
on the remote host.

* Port numbers are assigned in various ways, depending on whether the message is a request or a
response. While server processes have static port numbers assigned to them, clients dynamically chooses a
port number for each conversation.

* The combination between IP address and port number is called socket and it's unique connection.
C:\>netstat

Active Connections

Proto Local Address Foreign Address State

TCP kenpc:3126 192.168.0.2:netbios-ssn ESTABLISHED
TCP kenpc:3158 207 .1:38.126.152:htEp ESTABLISHED
TCP kenpc:3159 207.138.126.169:http ESTABLISHED
TCP kenpc:3160 207.138.126.169:http ESTABLISHED
TCP kenpc:3161 sc.msn.com:http ESTABLISHED
TCP kenpc:3166 www.cisco.com:http ESTABLISHED

C\>

Port Numbers

Well Known Ports (Numbers 0 to 1023) - These numbers are reserved for services and
applications. They are commonly used for applications such as HTTP (web server) POP3/SMTP (e-mail server)
and Telnet. By defining these well-known ports for server applications, client applications can be programmed
to request a connection to that specific port and its associated service.

Registered Ports (Numbers 1024 to 49151) - These port numbers are assigned to user processes
or applications. These processes are primarily individual applications that a user has chosen to install rather
than common applications that would receive a Well Known Port. When not used for a server resource, these
ports may also be used dynamically selected by a client as its source port.

Dynamic or Private Ports (Numbers 49152 to 65535) - Also known as Ephemeral Ports, these
are usually assigned dynamically to client applications when initiating a connection. It is not very common for a
client to connect to a service using a Dynamic or Private Port (although some peer-to-peer file sharing
programs do).

Using both TCP and UDP

Some applications may use both TCP and UDP. For example, the low overhead of UDP enables DNS to serve
many client requests very quickly. Sometimes, however, sending the requested information may require the
reliability of TCP. In this case, the well known port number of 53 is used by both protocols with this service.

Port Number Range

TCP Ports UDP Ports

0to 1023

1024 to 49151

49152 to 65535

Registered TCP Ports:

1863
8008
8080

MSN Messenger
Alternate HTTP
Alternate HTTP

Port Graup Fort Number Range Port Group

A Well Known (Contact) Ports
Dto 1023 A Well Known (Contact) Ports
Reagistered Ports
1024 to 49151 A Registered Ports
Private and/or Dynamic Ports t
49152 to 65535 Prlvate and/or Dynamic Ports
Well Known TCP Ports 1
21 FTP Registered UDP Ports: Well Known UDP Ports:;
23 Telnet 1812 RADIUS Authentication Protocol 69 TFTP
25 SMTP 2000 Cisco SCCP {VoIP) 520 RIP
80 hrie 5004 RTP {Voice and Video Transport Protocol)
MRS oS 5060 SIP (VoIP)
194 Internet Relay Chat (IRC)
443 Secure HTTP (HTTPS)

TCP and UDP Ports

Port Number Range Port Group

0to 1023 A Well Known (Contact) Ports
1024 to 49151 A Registered Ports

49152 to 65535 Private and/or Dynamic Potts
Raglstered TCP/UDP Common Ports: Well Known TCP/UDP Commeon Ports:
1433 MS SaL 53 DNS

2948 WAP (MMS) 161 SNMP

531 AOL Instant Messenger, IRC

