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Agenda
• Introduction

– Motivation – why isn’t this a solved problem?
– Parity computations as an example
– Error code construction and evaluation (without scary math)
– Example using parity codes

• Checksums
– What’s a checksum?
– Commonly used checksums and their performance

• Cyclic Redundancy Codes (CRCs)
– What’s a CRC?
– Commonly used CRC approaches and their performance

• Don’t blindly trust what you hear on this topic
– A good CRC is almost always much better than a good Checksum
– Many published (and popular) approaches are suboptimal or just plain wrong
– There are some topics to be careful of because we don’t know the answers

• Q&A
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Checksums and CRCs Protect Data Integrity
• Compute check sequence when data is transmitted or stored

– Data Word: the data you want to protect (can be any size; often Mbytes)
– Check Sequence: the result of the CRC or checksum calculation
– Code Word = Data Word with Check Sequence Appended

• To check data integrity:
– Retrieve or receive Code Word
– Compute CRC or checksum on the received Data Word
– If computed value equals Check Sequence then no data corruption found

• (There might be data corruption!  But if there is, you didn’t detect it.)

Code Word

Data Word Check Sequence

CRC or
Checksum
Calculation
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Potential CRC/Checksum Usage Scenarios
• Network packet integrity check

• Image integrity check for software update
• Boot-up integrity check of program image

– e.g., flash memory data integrity check

• FPGA configuration integrity check

• Configuration integrity check
– e.g., operating parameters in EEPROM

• RAM value integrity check
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Why Is This A Big Deal?
• Checksums are pretty much as good as CRCs, right?

– In a word – NO!
– Typical studies of checksums compare them to horrible CRCs
– Would you prefer to detect all 1 & 2-bit errors (checksum) or

all possible 1, 2, 3, 4, 5-bit errors (CRC) for about the same cost?

• CRCs have been around since 1957 – aren’t they a done deal?
– In a word – NO!
– There wasn’t enough compute power to find optimal CRCs until recently…

so early results are often not very good
– There is a lot of incorrect writing on this topic … that at best assumes the 

early results were good
– Many widespread uses of CRCs are mediocre, poor, or broken

• Our goal today is to show you where the state of the art really is
– And to tune up your sanity check detector on this topic
– Often you can get many orders of magnitude better error detection simply by 

using a good CRC at about the same cost
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Error Coding For Poets (who know a little discrete math)

• The general idea of an error code is to mix all the bits in the data word to produce a 
condensed version (the check sequence)
– Ideally, every bit in the data word affects many check sequence bits
– Ideally, bit errors in the code word have high probability of being detected
– Ideally, more probable errors with only a few bits inverted detected 100% of the time
– At a hand-wave, similar to desired properties of a pseudo-random number generator

• The Data Word is the seed value, and the Check Sequence is the pseudo-random number

• The ability to do this will depend upon:
– The size of the data word

• Larger data words are bigger targets for bit errors, and are harder to protect
– The size of the check sequence

• More check sequence bits makes it harder to get unlucky with multiple bit errors
– The mathematical properties of the “mixing” function

• Thorough mixing of data bits lets the check sequence detect simple error patterns
– The type of errors you expect to get (patterns, error probability)

Data Word Check Sequence
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Example: Parity As An Error Detection Code
• Example error detection function:   Parity

– XOR all the bits of the data word together to form 1 bit of parity

• How good is this at error detection?
– Only costs one bit of extra data; all bits included in mixing
– Detects all odd number of bit errors (1, 3, 5, 7, … bits in error)
– Detects NO errors that flip an even number of bits (2, 4, 6, … bits in error)
– Performance: detects up to 1 bit errors; misses all 2-bit errors
– Not so great – can we do better?
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Basic Model For Data Corruption
• Data corruption is “bit flips” (“bisymmetric inversions”)

– Each bit has some probability of being inverted
– “Weight” of error word is number of bits flipped (number of “1” bits in error)

• Error detection works if the corrupted Code Word is invalid
– In other words, if corrupted Check Sequence doesn’t match the Check 

Sequence that would be computed based on the Data Word
– If corrupted Check Sequence just happens to match the Check Sequence 

computed for corrupted data, you have an undetected error
– All things being equal (which they are not!!!) probability of undetected

error is 1 chance in 2k for a k-bit check sequence
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Example: Longitudinal Redundancy Check (LRC)
• LRC is a byte-by-byte parity computation

– XOR all the bytes of the data word together, creating a one-byte result
– (This is sometimes called an “XOR checksum”

but it isn’t really integer addition, so it’s not quite a “sum”)
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How Good Is An LRC?
• Parity is computed for each bit position (vertical stripes)

– Note that the received copy of check sequence can be corrupted too!

• Detects all odd numbers of bit errors in a vertical slice
– Fails to detect even number of bit errors in a vertical slice
– Detects all 1-bit errors; Detects all errors within a single byte
– Detects many 2-bit errors, but not all 2-bit errors

• Any 2-bit error in same vertical slice is undetected

    0 0 1 0  0 1 0 0 
 1 0 1 1  1 0 0 0

    1 1 1 1  1 1 1 1
   0 0 0 0  0 0 0 1

0 1 1 0  0 0 1 0

0 1 1 0  0 0 1 0
computed
No Errors

    0 0 1 0  0  0 0 
    1  1 1  1  0 0
    1 1  1  1  1 1
    0 0 0 0  0 0 0 1

0
1 1

0 0

0 1 1 0  0 0  00

0 0 0 0  0 1 1 0
computed

Detected Error

    0 0 1 0  0 1 0 0 
    1 0 1 1  1 0 0 

 1  1 1  1 1 1 
    0  0 0   0 0 

1
0 0
1 1 0

0 1 1 0   0 1 1 1

0 1 1 0  1 0 1 1
computed

Undected Error!

Red bits are transmission or storage errors

N
o 

M
at

ch

M
at

ch
!!Received

Check
Sequence

Received
Data
Word

Computed
LRC
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Error Code Effectiveness Measures
• Metrics that matter depend upon application, but usual suspects are:

– Maximum weight of error word that is 100% detected
• Hamming Distance (HD) is lowest weight of any undetectable error
• For example, HD=4 means all 1, 2, 3 bit errors detected 

– Fraction of errors undetected for a given number of bit flips
• Hamming Weight (HW): how many of all possible m-bit flips are undetected?

– E.g. HW(5)=157,481 undetected out of all possible 5-bit flip Code Word combinations
– Fraction of errors undetected at a given random probability of bit flips

• Assumes a Bit Error Ratio (BER), for example 1 bit out of 100,000 flipped
• Small numbers of bit flips are most probable for typical BER values

– Special patterns 100% detected, such as adjacent bits
• Burst error detection – e.g., all possible bit errors within an 8 bit span

– Performance usually depends upon data word size and code word size
• Example for LRC8   (8 bit chunk size LRC)

– HD=2    (all 1 bit errors detected, not all 2 bit errors)
– Detects all 8 bit bursts (only 1 bit per vertical slice)
– Other effectiveness metrics coming up…
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LRC-8

LRC-16

LRC-32

LRC-8 Fraction of Undetected Errors
• Shows Probability of

Undetected 2-bit Errors
for:
– LRC
– Addition checksum
– 1’s complement

addition checksum

• 8-bit addition checksum
is almost as good as
16-bit-LRC!
– So we can do better

for sure

Source: Maxino, T., & 
Koopman, P. "The 
Effectiveness of Checksums for 
Embedded Control Networks," 
IEEE Trans. on Dependable 
and Secure Computing, Jan-
Mar 2009, pp. 59-72.
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Can We Do Even Better?    YES!
• Can often get HD=6  (detect all 1, 2, 3, 4, 5-bit errors) with a CRC
• For this graph, assume Bit Error Rate (BER) = 10-5 flip probability per bit

Source:
Maxino, T., & Koopman, P. 
"The Effectiveness of 
Checksums for Embedded 
Control Networks," IEEE 
Trans. on Dependable and 
Secure Computing, Jan-
Mar 2009, pp. 59-72.

16-Bit LRC

Best 16-Bit Checksum

Best 16-bit CRCD
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Checkpoint – What’s Coming Next
• You now have basic vocabulary and background

• Let’s talk about better ways to detect errors
– Checksums
– Cyclic Redundancy Codes (CRCs)
– Evaluation strategies
– Pitfalls
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Checksums
• A checksum “adds” together “chunks” of data

– The “add” operation may not be normal integer addition
– The chunk size is typically 8, 16, or 32 bits

• We’ll discuss:
– Integer addition “checksum”
– One’s complement “checksum”
– Fletcher Checksum
– Adler Checksum
– ATN Checksum (AN/466)
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Integer Addition Checksum
• Same as LRC, except use integer “+” instead of XOR

– The carries from addition promote bit mixing between adjacent columns
• Can detect errors that make two bits go 0 1  or 1 0  (except top-most bits)
• Cannot detect compensating errors  (one bit goes 0 1 and another 1 0)

– Carry out of the top bit of the sum is discarded
• No pairs of bit errors are detected in top bit position
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One’s Complement Addition Checksum
• Same as integer checksum, but add Carry-Out bits back

– Plugs error detection hole of two top bits flipping with the same polarity
– But, doesn’t solve problem of compensating errors
– Hamming Distance 2 (HD=2); some two-bit errors are undetected
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Fletcher Checksum
• Use two running one’s complement checksums

– For fair comparison, each running sum is half width
– E.g., 16-bit Fletcher Checksum is two 8-bit running sums

– Initialize:    A = 0;   B = 0;
– For each byte in data word:     A = A + Bytei;    B = B + A;

• One’s complement addition!

– Result is A concatenated with B   (16-bit result)

• Significant improvement comes from the running sum B
– B = ByteN-1 + 2*ByteN-2 + 3*ByteN-3 + …
– Makes checksum order-dependent (switched byte order detected)
– Gives HD=3 until the B value rolls over

• For example, 256*ByteN-256 does not affect B
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Adler Checksum 
• Intended to be an improvement on Fletcher Checksum

– One’s complement addition is the same as modulo 255 addition
– Adler checksum uses a prime integer as a modulus

• 251 instead of 255 for Adler 16  (two 8-bit sums)
• 65521 instead of 65535 for Adler 32 (two 16-bit sums)

• In practice, it is not worth it
– For most sizes and data lengths Adler is worse than Fletcher
– In the best case it is only very slightly better

• But computation is more expensive because of the modular sum
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ATN-32 Checksum  [AN/466]
• Aviation-specific riff on Fletcher Checksum

– Four running 1-byte sums   (one’s complement addition)
– Potentially gives good mixing for 8-bit data chunks

• Algorithm:
– Initialize    C0, C1, C2 and C3 to zero
– For each Data Word byte:

C0 += Bytei;     C1 += C0;    C2 += C1;   C3 += C2;
(one’s complement addition, as with Fletcher checksum)

– 32-bit check sequence is a particular formula of C0..C3

• No apparent published analysis of error detection results  
• Standard says it provides good protection, but no quantitative assessment
• We’ll take a look at this and other relevant error codes in our study
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Checksum Performance Is Data Dependent
• The data values affect checksum performance

– Worst-case performance is equal number of zeros and ones
– Below is 64-bit data word and BER of 10-5

• This means need to take into account data values when 
assessing performance

Source:
Maxino, T., & Koopman, P. "The 
Effectiveness of Checksums for 
Embedded Control Networks," IEEE 
Trans. on Dependable and Secure 
Computing, Jan-Mar 2009, pp. 59-72.
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Cyclic Redundancy Codes (CRCs)
• CRCs Use Division Instead Of Addition
• Intuitive description:

– Addition does OK but not great mixing of Data Word bits
– What about using the remainder after division instead?

• Integer analogy:    remainder after integer division
– 2,515,691,591 mod 251 = 166 8-bit check sequence

• Any simple change to the input number (Data Word) changes remainder
– But, need to pick a clever divisor

• E.g., 2,515,691,591 mod 100 = 91 unaffected by most digits
• Probably want something like prime number 251, but may be more complex than 

that to avoid “wasting” result values of 252, 253, 254, 255
– ISBNs use this technique for the last digit, with divisor of 11

• An “X” at the end of an ISBN means the remainder was 10 instead of 0..9
– Also, want something that is efficient to do in SW & HW

• Original CRCs were all in hardware to maximize speed
and minimize hardware cost
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Mathematical Basis of CRCs
• Use polynomial division (remember that from high school?)

over Galois Field(2) (this is a mathematician thing)
– At a hand-waving level this is division using Boolean Algebra

• “Add” and “Subtract” used by division algorithm both use XOR

11010011101100 000 <--- Data Word left shifted by 3 bits
1011               <--- 4-bit divisor is 1011  x3 + x + 1
01100011101100 000 <--- result of first conditional subtraction
1011              <--- divisor

00111011101100 000 <--- result of second conditional subtraction
1011             <--- continue shift-and-subtract ...

00010111101100 000
1011

00000001101100 000
1011

00000000110100 000
1011

00000000011000 000
1011

00000000001110 000
1011

00000000000101 000 
101 1

----------------- Remainder is the Check Sequence
00000000000000 100 <--- Remainder (3 bits)

[Wikipedia]
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Hardware View of CRC
• CRC also has a clever hardware implementation:

– The feedback “polynomial” is the divisor; shift register holds remainder

• The tricky part is in picking the right Feedback Polynomial (divisor)
– The best ones are not necessarily “prime” (irreducible) nor “primitive”
– A lot of what is published on this topic has problems

Example Feedback Polynomial:
0xB41 = x12+x10+x9+x7+x+1     (the “+1” is implicit in the hex value)

= (x+1)(x3 +x2 +1) (x8 +x4 +x3 +x2 +1)
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A Typical Legacy CRC Selection Method

» Numerical Recipes in C, Press et al. 1992

• But, there are some problems:
– Many good polynomials are not primitive nor divisible by (x+1)
– Divisibility by (x+1) doubles undetected error rate for even # of bit errors
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A Typical Polynomial Selection Method

» Numerical Recipes in C, Press et al.

• But, there are some problems:
– Many good polynomials are not primitive nor divisible by (x+1)
– Divisibility by (x+1) doubles undetected error rate for even # of bit errors
– How do you know which competing polynomial to pick?
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A Typical Polynomial Selection Method

» Numerical Recipes in C, Press et al.

• But, there are some problems:
– Many good polynomials are not primitive nor divisible by (x+1)
– Divisibility by (x+1) doubles undetected error rate for even # of bit errors
– How do you know which competing polynomial to pick?
– This CRC-12 polynomial is incorrect (there is a missing +x2)
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A Typical Polynomial Selection Method

» Numerical Recipes in C, Press et al.

• But, there are some problems:
– Many good polynomials are not primitive nor divisible by (x+1)
– Divisibility by (x+1) doubles undetected error rate for even # of bit errors
– How do you know which competing polynomial to pick?
– This CRC-12 polynomial is incorrect (there is a missing +x2)
– You can’t pick at random from a list!
(BTW, 3rd edition has updated this material and gets it right)
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Example – 8 Bit Polynomial Choices
• Pud (undetected error rate) is one way to evaluate CRC effectiveness

– Uses Hamming weights of polynomials
– Uses assumed random independent Bit Error Rate (BER)

Data Word Length (bits)

8 16 32 64 128 256 512 1024 2048

P
ud

1e-12

1e-15

1e-18

1e-21

1e-24

1e-27

1e-30

1e-33

Bound 

HD=2

HD=3

HD=4

HD=5 BER = 10-6

BETTER

WORSE
LOWEST POSSIBLE
BOUND COMPUTED
BY EXHAUSTIVE SEARCH
OF ALL POLYNOMIALS

Source:
Koopman, P. & 
Chakravarty, T., "Cyclic 
Redundancy Code (CRC) 
Polynomial Selection for 
Embedded Networks,“
DSN04, June 2004
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What Happens When You Get It Wrong?
• DARC (Data Radio Channel), ETSI, October 2002

– DARC-8 polynomial is optimal for 8-bit payloads
– BUT, DARC uses 16-48 bit payloads, and misses some 2-bit errors
– Could have detected all 2-bit and 3-bit errors with same size CRC!

Data Word Length (bits)

8 16 32 64 128 256 512 1024 2048

P
ud

1e-12

1e-15

1e-18

1e-21

1e-24

1e-27

1e-30

1e-33

0x9C DARC-8

Bound 

HD=2

HD=3

HD=4

HD=5

0x9C

BER = 10-6
}

DARC
PAYLOAD LENGTH

16-48 BITS

DARC-8

Source:
Koopman, P. & 
Chakravarty, T., "Cyclic 
Redundancy Code (CRC) 
Polynomial Selection for 
Embedded Networks,“
DSN04, June 2004D
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CRC-8 Is Better
• CRC-8 (0xEA) is in very common use

– Good for messages up to size 85
– But, room for improvement at longer lengths.  Can we do better?

Data Word Length (bits)

8 16 32 64 128 256 512 1024 2048

P
ud

1e-12

1e-15

1e-18

1e-21

1e-24

1e-27

1e-30

1e-33

0x9C DARC-8
0xEA CRC-8

Bound 

HD=2

HD=3

HD=4

HD=5

0x9C

0xEA

BER = 10-6

CRC-8

Opportunities for
Improvement Source:

Koopman, P. & 
Chakravarty, T., "Cyclic 
Redundancy Code (CRC) 
Polynomial Selection for 
Embedded Networks,“
DSN04, June 2004
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Baicheva’s Polynomial C2
• [Baicheva98] proposed polynomial C2, 0x97

– Recommended as good polynomial to length 119
– Dominates 0xEA (better Pud at every length)

Data Word Length (bits)

8 16 32 64 128 256 512 1024 2048

P
ud

1e-12

1e-15

1e-18

1e-21

1e-24

1e-27

1e-30

1e-33

0x9C DARC-8
0xEA CRC-8
0x97  C2
Bound 

HD=2

HD=3

HD=4

HD=5

0x9C

0xEA
0x97

BER = 10-6

Baicheva C-2

Source:
Koopman, P. & 
Chakravarty, T., "Cyclic 
Redundancy Code (CRC) 
Polynomial Selection for 
Embedded Networks,“
DSN04, June 2004
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But What If You Want the HD=3 Region?
• No previously published polynomials proposed for HD=3 region

– We found that 0xA6 has good performance
– Better than C2 and near optimal at all lengths of 120 and above

HD=2

HD=3

HD=4

HD=5

0xA6

Data Word Length (bits)

8 16 32 64 128 256 512 1024 2048

P ud

1e-12

1e-15

1e-18

1e-21

1e-24

1e-27

1e-30

1e-33

0xA6
Bound

New Recommended
Polynomial

0x97 Baicheva C2

0x97

Source:
Koopman, P. & 
Chakravarty, T., "Cyclic 
Redundancy Code (CRC) 
Polynomial Selection for 
Embedded Networks,“
DSN04, June 2004
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Optimal Polynomials For Small CRCs
• P. Koopman, T. Chakravathy, “Cyclic Redundancy Code (CRC) Polynomial Selection for 

Embedded Networks”, The International Conference on Dependable Systems and 
Networks, DSN-2004. 
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More On Picking A Good CRC
• Important to select CRC polynomial based on:

– Data Word length
– Desired HD
– Desired CRC size
Safety-critical applications commonly select HD=6 at max message length

• Good values also known for 24-bit and 32-bit polynomials
– IEEE 802.3 standard gives HD=6 up to              268-bit data words
– But 0xBA0DC66B  gives HD=6 up to           16,360-bit data words

• Koopman, P., "32-bit cyclic redundancy codes for Internet applications," 
International Conference on Dependable Systems and Networks (DSN), 
Washington DC, July 2002

– We’re working on assembling these in a convenient format
• Be careful of published polynomials

– Get them from refereed publications, not the web
– Even then, double-check everything!

• (We found a typo within the only published HD=6 polynomial value in an IEEE 
journal)

– A one-bit difference can change great horrible
– Mapping polynomial terms to feedback bits can be tricky
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Are Checksums Or CRCs Better?
• Checksums can be slightly faster in software (this is usually overstated)

– But tend to give far worse error performance
• Most checksum folklore is based on comparing to a bad CRC or with non-

representative fault types

Source:
Maxino, T., & Koopman, P. 
"The Effectiveness of 
Checksums for Embedded 
Control Networks," IEEE 
Trans. on Dependable and 
Secure Computing, Jan-Mar 
2009, pp. 59-72.

Small CRCs can beat Fletcher-16.
12-bit CRC is better up to 2Kbits
with fewer check sequence bits.

HD=2

HD=4

HD=3

HD=5

HD=6

Fletcher-16
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Aren’t Software CRCs Really Slow?
• Speedup techniques have been known for years

– Important to compare best implementations, not slow ones
– Some CPUs now have hardware support for CRC computation

• 256-word lookup table provides about 4x CRC speedup
– Careful polynomial selection gives 256-byte table and ~8x speedup
– Intermediate space/speedup approaches can also be used
– Ray, J., & Koopman, P. "Efficient High Hamming Distance CRCs for

Embedded Applications," DSN06, June 2006.

• In a system with cache memory, CRCs are probably not a lot more 
expensive than a checksum
– Biggest part of execution time will be getting data bytes into cache!
– We are working on a more definitive speed tradeoff study
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Additional Checksum & CRC Tricks
• Use a “seed” value

– Initialize Checksum or CRC register to other than zero
– Prevents all-zero data word from resulting in all-zero check 

sequence
– Can be used (with great care) to mitigate network masquerading

• Transmitters with different seed values won’t “see” each others’ messages

• Be careful with bit ordering
– CRCs provide burst error detection up to CRC size
– Unless you get the order of bits wrong (as in Firewire)
– Unless you put CRC at front instead of back of message

• CRC error performance is independent of data values
– It is only the patterns of error bits that matter
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Here There Be Dragons…
Other places to be wary (out of scope for our current research)

• Bit encoding interacts with CRCs
– A one- or two-bit error can cascade into multiple bits as seen by 

the CRC
• For example, bit stuffing errors can cascade to multi-bit errors
• For example 8b10b encoding can cascade to multi-bit errors

– Sometimes bit encoding can help (e.g., Manchester RZ 
encoding) by making it likely corruption will violate bit encoding 
rules

• Watch out for errors in intermediate stages
– A study of Ethernet packets found errors happened in routers!
– J. Stone and C. Partridge, “When the CRC and TCP Checksum 

Disagree,” Computer Comm. Rev., Proc. ACM SIGCOMM ’00, 
vol. 30, no. 4, pp. 309-319, Oct. 2000.
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CAN vs. FlexRay Length Field Corruptions
• CAN does not protect length field

– Corrupted length field will point to wrong location for CRC!
– One bit error in length field circumvents HD=6 CRC

• FlexRay solves this with a header CRC to protect Length

ID

ID

LEN

LEN

CRC

CRCCRC

DATA

DATA

Original Message

Corrupted LEN

Source: FlexRay Standard, 2004
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Byzantine CRC
• Byzantine failures for CRCs and Checksums

• Paulitsch, Morris, Hall, Driscoll, Koopman & Latronico, "Coverage and 
Use of Cyclic Redundancy Codes in Ultra-Dependable Systems," DSN05, 
June 2005.

• Memory errors may be complex and value-dependent
– A cosmic ray strike may take out multiple bits in a pattern

Example Schrodinger’s CRC caused by non-saturated voltage values on a 
data bus.  Two receivers (a and b) can see the same message as having 
two different values, and each view having a valid CRC 
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Composite Checksum/CRC Schemes
• Idea: use a second error code to enhance error detection

– Rail systems add a 32-bit “safety CRC”
– Checksum + CRC can be a win ([Tran 1999] on CAN)
– ATN-32 is a checksum used in context of network packet CRC

• Youssef et al. have a multi-CRC aviation proposal
– Combines ideas such as “OK to miss an error if infrequent”
– Uses composite CRCs based on factorization
– Evaluated with random experiments

• Issue to consider:
– What HD do you really get with a composite scheme?

• E.g., which error patterns slip past both CRCs?

– Are diverse checksum+CRC approaches better than
dual CRC approaches?
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Review
• Introduction

– Motivation – why isn’t this a solved problem?
– Parity computations as an example
– Error code construction and evaluation (without scary math)
– Example using parity codes

• Checksums
– What’s a checksum?
– Commonly used checksums and their performance

• Cyclic Redundancy Codes (CRCs)
– What’s a CRC?
– Commonly used CRC approaches and their performance

• Don’t blindly trust what you hear on this topic
– A good CRC is almost always much better than a good Checksum
– Many published (and popular) approaches are suboptimal or just plain wrong
– There are some topics to be careful of because we don’t know the answers

• Q&A
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Investigators
• Philip Koopman Koopman@cmu.edu

– Assoc. Prof of ECE, Carnegie Mellon University (PA)
– Embedded systems research, emphasizing dependability & safety
– Industry experience with transportation applications

• Kevin Driscoll Kevin.Driscoll@honeywell.com
– Engineering Fellow, Honeywell Laboratories (MN)
– Ultra-dependable systems research & security
– Extensive data communications experience for aviation

• Brendan Hall Brendan.Hall@honeywell.com
– Engineering Fellow, Honeywell Laboratories (MN)
– Fault tolerant system architectures & devlopment process
– Extensive experience with aviation computing systems


