LAB WORK 09. GRAPH ALGORITHMS IN COMPUTER NETWORKS.

1. LAB TARGET.

e The study of graph algorithms used in computer networks:
Graph representation and traversal methods (DFS and BFS);
STP (Spanning Tree Protocol) to eliminate network loops on switches;
MinST Prima & MinST Kruskal — finding minimal spanning tree in PIM (multicasting);
SPF Tree Dijkstra — finding the Shortest Path Tree in OSPF;
o Max Flow —maximal flow search between two nodes of network in MPLS Traffic Engineering.
e (Gain experience with graph mining software GraphOnline and GraphTea.

O O O O

2. LAB ASSIGNMENT.

2.1. CREATE YOUR VARIANT OF THE TASKS.

1. Network topology variant = (N MOD 10)+1 , where N is the alphabetical number of the first letter of
your name. Variants are listed at the end of the guidelines in section 5.

2. Vertices Names in the DiGraph (directed graph) are replaced by the first letters in your last name, first
name and patronymic, written in the English alphabet with the rejection of repeated letters and non-
alphabetic characters.

3. Edges Weight = to the modulus of the difference between the numbers of letters of adjacent vertices.
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2.2. FORMULATION OF THE PROBLEM.

We have:

1.

A network topology of several routers is set (by option).

2. A source s-router (start) and a target t-router (target) are specified.
3. GraphOnline or GraphTea software of your choice (hereinafter referred to as GraphApp).
Necessary:

1. Form a variant of an individual task.

2. Build an Adjacency Matrix (weight matrix) for your individual DiGraph.

3. Using the GraphApp program, graphically represent a DiGraph indicating: vertices, edges and weights in
accordance with your variant. Save the Internet link for the resulting DiGraph.

Using GraphApp, build a MinST and report a graph with a selected MinST and its Cost.
Using the Prima and Kruskal algorithms to manually construct MinST, compare the results with item 4 and
comment on the differences.

6. Using the Dijkstra algorithm, manually build an SPF Tree (Shortest Path First Tree) from the s-vertex of
the DiGraph. Include in the report a table of the step-by-step operation of the algorithm and a list of the
shortest paths from the s-vertex to the other vertices.

7. Using GraphApp, build an SPF Tree from an s-vertex to a t-vertex using the Dijkstra algorithm. Include in
the report a DiGraph with highlighted SPF search paths. Compare results with 6 and comment differences.

8. Using the GraphApp program, determine the MaxFlow from the s-vertex to the t-vertex and report a

DiGraph indicating the edge flow metrics.
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2.3. REPORT AND GRADUATION.
The Report is provided electronically. The report must include:

1. The process of forming a variant of the task and the original DiGraph.
2. The Adjacency Matrix for the resulting DiGraph.

Graphical representation of a DiGraph with marked vertices, edges and weights. Provide a link to the
resulting graph on the Internet.

Cost and image of MinST received in GraphApp.

Step-by-step work for the Prima algorithm (Vertex Sequence and MinST cost) and for the Kruskal algorithm
(Edge Sequence and MinST cost). Comparison of the 4 and 5 results.

6. Table of step-by-step work of the Dijkstra algorithm and a list of SPs from the s-vertex (3 points of grade).
SPF Tree image from s to t obtained by the Dijkstra algorithm in GraphApp. Comparison 6 and 7 results.

8. The value of the maximum MaxFlow flow from the s-router to the t-router and a DiGraph indicating the flow
metrics through the communication lines, obtained by the MaxFlow algorithm in GraphApp.

Grade.

The maximum score is 10 points. Each item correctly completed is worth 1 point, and item 6 is worth 3
points.

An example of a report is provided in Report Blank Form.
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3. BRIEF THEORETICAL INFORMATION.

3.1. ALGORITHMS ON GRAPHS.
Graph models are widely used in various applied areas, including computer networks:

traversal of the graph in DFS (B ry6uHy) and BFS (B wupuHy) (needed in many other algorithms);
construction spanning tree ST (in the STP protocol for Ethernet switches);

performing topological sorting of a directed acyclic graph (in various application tasks and for SP);
construction of the minimum spanning tree MinST (in the PIM routing group protocol);

finding the shortest paths between SP vertices (in the OSPF routing protocol);

finding the maximum flow MaxFlow (for Traffic Engineering in MPLS)

MporpammHoe o6ecneyeHne ana paboTbl ¢ rpacamm n uccneaoBaHus anropuTMoB Ha rpadax:
e Graph Online https://graphonline.ru/en/home?graph=weightedGraph
e Graph Tea http://graphtheorysoftware.com/
e Graph Editor https://csacademy.com/app/graph_editor/
e Graph Teory https://csacademy.com/lessons/

© Yuriy Shamshin 4/32



3.2. GRAPH PRESENTATION METHODS.

There are several ways to define graphs. To solve a specific problem, one or another method is chosen, depending
on the convenience and efficiency of its application.

A demonstration and explanation of the various ways of describing graphs
can be found at https://youtu.be/c8P9kB1eun4.

3.2.1. Graphical representation.

This method is best for figurative representation of the topology of
connections for a human and bad for representation in a computer >

The graph G is a collection of sets of vertices V (or nodes) and edges E:

o G=(V,E).

e V={0,1,2,3,4,56,7}

e E={(0,1,2)(0,3,9)(0,4,8)(1,3,7)(1,6,3)(2,4,7)(2,5,7)(3,5,3)(3,7,2)(4,2,9)(4,6,8)
(6,2,1)(6,5,9)}

Graph types: )
e connected, disconnected, null (V&E=0 or E=0 use in Mathematical induction);

e directed, undirected, mixed;

e weighted, unweighted;

e cyclic, acyclic.

CDWAG - connected, directed, weighted, acyclic graph.
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3.2.2. Adjacency List (Cnuckun cmexHocTw).

Each i-th list contains the numbers of vertices adjacent to the i-th vertex.

0 7—L1 2+39+4
1 —» 3|7 +s 3

2 —p 4|7 +5 7

3 —p» 5|3 +7 2

4 —» 2|9 +6 8

5

6 2|1 +5 g

,

Adjacency lists are convenient for
entering into a computer, save
memory, but, in the case of a weighted
graph, use is difficult, since you need
to additionally store the weight of the
edges.

For unweighted directed graph
1134

: 36

: 45

57

26

: null

25

: null
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3.2.3. Incidence Matrix (MaTpuua MHUMOEHTHOCTHN).

Matrix A of size n*m (n is the number of vertices, m is the number of edges),
the element aij of the matrix is equal to 1 if the i-th vertex is incident to the j-
th edge and O otherwise.

The incidence matrix does not carry direct information about the edges, and
it is necessary to additionally set the weight vector of the edges and
additionally set the direction of the connection (for example, as positive for
the initial and as negative for the end node of the edge).

Edgej| eo | e1 | e2 | es | es | es | e | €7 | es | €9 | e | €11 | en
Vertice i
0 1 1 1
1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1
5 1 1 1
6 1 1 1 1
7 1
Weight W, 2 9 8 7 3 7 7 3 2 1 918119
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3.2.4. Adjacency and Weight Matrices (MaTpuLbl CMEXHOCTU 1 BECOB).

Matrix A of size n*n whose element Aijj is equal to 1 if the i-th vertex is
adjacent to the j-th one, and 0 otherwise. It is possible to store compactly
as a bitmap.

6 1 2 38 4 5 6 7 The adjacency matrix of an

undirected graph is symmetric

0 2 9 | 8 about the main diagonal.

! ! ’ For a weighted graph, the value

2 7 | 7 of the weight function is used and
such a matrix is called the weight

B 3 - matrix.

4 3 8

Since the adjacency matrix has an estimate of size O(n"2),
5 algorithms that use this way of representing graphs have no
less complexity than O(n"2) (O -oueHka CnoXHOCTH).
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3.3. GRAPH TRAVERSAL.

The main graph traversal algorithms are depth traversal (DFS) or breadth traversal (BFS). Depth-first traversal
sequentially scans the vertices of the graph by building a chain from the current vertex. Breadth-first searches the
vertices adjacent to the current one first.

3.3.1. DFS - Depth First Search (nouck B rnybuHy).
Detail.

1. The search starts from some (any) vertex v.

We consider a new (from those not considered earlier) vertex
u, adjacent to v, and mark it as scanned.

3. Step 2 is repeated with the vertex u.

4. If at the next step the vertex w was scanned and there are no
vertices adjacent to w and not considered earlier, then we
return from the vertex w to the before scanned vertex.

5. If all the vertices have been scanned or we have returned to the initial vertex v, but there are no new vertices
adjacent to it, then the traversal process is over.

Complexity DFS=0O(V+E). DFS is convenient for recursive or stack implementation. A demonstration and
explanation of the DFS algorithm can be viewed at links https://csacademy.com/lesson/depth_first search and
https://youtu.be/ymlzHmRN4To. Algorithmic complexity (big O) is a measure of how long an algorithm would take
to complete given some size input (n).

Example. A graph is given (see figure). The search starts from vertex 1. The left figure shows the original graph,
and the right figure near the vertices in parentheses indicates the order in which the graph vertices were viewed
during the DFS.
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3.3.2. BFS - Breadth First Search (nouck B umpuHy).
Detail.

e Leta graph G=(V,E) and some initial vertex v be given.

e The breadth-first search algorithm enumerates all other
vertices reachable from v in order of increasing distance
from v.

e During the search, a part is extracted from the graph,
called a breadth-first search tree rooted at v.

e BFS complexity = O(V+E).

e To implement this principle, the queue data structure is
usually used.

e A demonstration and explanation of the operation of the BFS algorithm can be viewed at links
https://csacademy.com/lesson/breadth first search and https://youtu.be/ymizHmMRN4To.

Example. A graph is given (see figure). The search starts from vertex 1. The left figure shows the original graph,
and the right figure near the vertices in parentheses indicates the order in which the graph vertices were viewed
during the BFS.

© Yuriy Shamshin 10/32



3.4. ST - SPANNING TREE (OCTOBOE JEPEBO).
A graph with a number assigned to each edge is called a weighted graph.

Definition of a Spanning Tree. For an arbitrary connected undirected weighted graph G=(V,E), a
spanning tree (skeleton, carcass, frame) is a connected subgraph T=(V,E*), where E* € E, T containing
all vertices V of the graph G, and not having cycles. The number of edges E* in the skeleton T is always
one less than the number of vertices V of the graph G (E*=V-1).

A graph can have several skeletons from V to VA(V-2) depending on the completeness of graph
connections (oT nonHoTbl cBs3en). For example, different skeletons (frameworks) can be built by starting
a depth-first search from different vertices of the graph. The figure on the left shows a graph and on
the right two of its frames.

s

o 10

CromnrocTs: 44

The weight (or cost) of a skeleton is the sum of the weights of its edges. The cost spanning tree of 40
in the example is the minimal.
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3.4. MINST - MINIMAL SPANNING TREE.

For practical problems (transport, water pipes, networks, electrical, electronic circuit) it is often required to find a
frame of minimal weight.

3.4.1. MinST Kruskal's algorithm (1956).

Joseph Bernard Kruskal, 1928-2010 — american mathematician.
Given: connected, weighted, undirected n-vertex graph G=(V,E).
Algorithm:

1. Start creating forest with null of Fo, containing only n vertices (without edges) of G.

2. Arrange the edges of the original graph G in non-decreasing order of their weights.

3. Starting from the first (minimal) edge, add the next edge to the forest Fi={T*} if its addition
does not create a cycle in T*.

4. Repeat step 3 until the number of edges in F is equal to (n-1).

Result: From the forest we get one minST tree T=(V,E*), where E* € E (E* is subset E).
Time complexity of the algorithm: from O(E+V) - if E is sorted to O(ElogE) - sorting E will take O(ElogE).

Kruskal's algorithm is preferable when the graph is sparse (paspexeHHbin) (there are few edges in the graph):
E<=(V"2)/2 and the edges are already sorted or can be sorted in linear time.

For G1(E=10,V=10)=>01=20. For G2(E=V"2,V=10)=>02=100*log100=1000
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Example 1.

Graph and the process of constructing a MinST
using the Kruskal algorithm -

Edge Sequence: (1-4[1])(4-5[2])(2-3[3])(2-5[4]).

Cost of MinST = 10.

Example 2.

Edge Sequence = (1-6[10])(3-4[12])(2-7[14])(2-3[16])(4-5[22])(5-6[25])
Cost of MinST = 99 units.
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3.4.2. MinST Prim's algorithm (1957).
Robert Clay Prim, born 1921 — american mathematician.
Given: connected, weighted, undirected n-vertex graph G=(V,E).

Algorithm: At each step, a finite tree T is completed (but not a forest of trees F as in
Kruskal's method).

The tree starts from any root vertex r and grows until it spans (oxsatuT) all vertices in V.
At each step, a vertex is added to the tree with the least weight edge among all the edges

connecting the already considered tree vertices with vertices from the rest of the graph, if
adding a vertex does not lead to a cycle in T*

Result: Minimal Spanning Tree T=(V,E*), where E* C E.
Time complexity of the algorithm: from O(E+VlogV) for Fibonacci heap (ky4a) to O(ElogV) for binary heap.

Prim's algorithm is preferable when the graph is dense (nnotHbi): the graph has a large number of edges, for
example (V°2/2)<E<=(V"2).
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Example 1. SM=[1,2,5.7) SP=[3,4] SM=[1,5.7] SP=[2.4]  SM=[5..7] SP=[1..4)

Graph and the process of constructing a 2 (2)

minimum spanning tree (MinST) using y A 3 .

Prim's algorithm > OO

SM is the remaining set of vertices in the ! !

graph, and SP is the set of vertices included @
SM=[] SP=[1..7]

in the constructed MinST tree.
Vertex Sequence = 3,4,2,1,6,5,7.
Cost of MinST = 14.

Example 2.

Vertex Sequence = 1,6,5,4,3,2,7.
Mpumep 3.
7

®
2 2
Vertex Sequence = a,b,c,f,e,d,g. Cost of MinST = 99 units.
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3.4.3. Prim’s Algorithm vs Kruskal’s Algorithm.

Result from Prim's Algorithm

( Cost = 14 units )

Given Graph

Result from Kruskal's Algorithm
( Cost = 14 units )
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3.5. SEARCH FOR THE SHORTEST PATH BETWEEN TWO GRAPH NODES.

The problem of finding the shortest path from a given vertex of a graph to another given vertex has no simpler
solution than the simultaneous search for all shortest paths (oaHOBpeMeHHbIM NOUCK BCex HauKpaTyanmnx
nyten) from some given vertex to every other vertex, so the SP problem is reduced to the SP Tree problem.

3.5.1. SPT Dijkstra's algorithm (1959).
Edsger Wybe Dijkstra, 1930-2002 — holland mathematician.

Dijkstra's algorithm is designed to find the shortest paths from one
vertex of a weighted directed graph to all other vertices.

For the algorithm to work correctly, it is necessary that there are
no edges with negative weights in the graph.

The algorithm uses the fact that any part of the shortest path is itself the shortest path between the
corresponding vertices. At each step, the algorithm "visits" one vertex and tries to decrease the path
cost labels. (https://net.academy.lv/labwork/net LW-09EN_Dijkstra.gif)

A demonstration and explanation of the SP Tree Dijkstra algorithm can be viewed at https://youtu.be/pVfiemxhdMw.

Given: connected, weighted, cyclic n-vertex graph G=(V,E).
Initialization.

All vertices of graph V are marked as unvisited. The cost label of the initial vertex to itself is assumed to be 0, the cost labels
to the remaining vertices are infinity (), this reflects that the distances (sumE’) to the other vertices of V are not yet known.

© Yuriy Shamshin 17/32



Algorithm.

1. The algorithm terminates when all vertices have been visited.
From the vertices not yet visited, the vertex u with the minimal cost label is selected. If the labels are equal, then
choose the oldest one.

3. The vertices connected to the vertex u by edges are called the neighbors of this vertex. For each neighbor, a new
cost label of the path is considered, if the resulting length is less than the current neighbor label, then replace the label
with the new value.

4. Having considered all the neighbors, mark the vertex u as visited and repeat the steps of the algorithm.
The result is a list of shortest paths connecting the given vertex to each vertex.
Dijkstra's algorithm time complexity is O(V*logV+E).
3.5.2. SPT Floyd algorithm (1962).

Floyd's algorithm is designed to find the SPTs for all vertices of a weighted graph simultaneously, which takes more time than
Dijkstra's algorithm. Floyd's algorithm time complexity is O(VA3).

3.5.3. SPT Bellman-Ford algorithm (1956).

The Bellman-Ford algorithm is simpler than Dijkstra's and works well for distributed systems, but its time complexity is O=(V*E),
which is larger than Dijkstra's. Dijkstra does not work for graphs with negative edge weights, while Bellman-Ford does work.

Negative weights occur in various applications of graphs. For example, instead of increasing the cost of a path, we can benefit
(Bbiroay) by following a particular path.
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3.5.4. SPT for CDWAG (Connected Directed Weighted Acyclic Graph).
Ans CDWAG ecTb anroputm co cnoxHocTtbto nopsgka O(V+E), 4To MeHbLue unm paBHO YeM y [1enkcTpsbl.

3.5.4.1. Tononoruyeckas coptupoBka ansa DWAG. e e

Tononornyeckas COPTUPOBKA - 3TO JIMHENHOE YNOpsA0YMBaHUE BEPLUMH Takum 06pasom,

4YTO AN KaXK4Oro HanpaefieHHOro pebpa uv BepluMHa U HaxO4MTCs nepeq v B nopsiake.

Tononornyeckas copTMpoBka HEBO3MOXHa, ecnu rpad He sinsetca DWAG. e 0 o
Onsa rpacba moxeT ObITb Goriee 04HOM TONONOrMYECKOW COPTUPOBKM. [epBOI BEPLLMHON B

TONOSIOrM4YECKON COPTUPOBKE BCErda ABMSETCS BeplUMHa C BXoAsLLUEN CTENEHb0, PaBHON

0 (BepwmHa 6e3 BxogsaLmx pebep). 9

Hanpumep, Tononornyeckas coptnpoBka rpada nokaszaHHOro Ha pucyHke - «5423 1 0» nnn «4 52 3 1 O».

ANropuTmM TONONOrMYecKom COpTUPOBKM - 3T0 NpocTo DFS (Deep First Search) ¢ gononHutensHbIM cTekoM. Takum o6paszom,
BPEMEHHas CINOXHOCTb Takas xe, kak y DFS = O(V+E).

Graph contain a cycle cannot have a valid ordering >

Ucnonb3oBaHue: TononorMyeckass COPTMPOBKA WCMONb3yeTcs ANs  NraHMpOBaHMWS
3aJaHni NO 3adaHHbIM 3aBUCUMOCTAM MeXAy 3afaHusiMu. B mHopmaTuke npunoxeHus
3TOro TUMNa BO3HMKAIOT NP MIIAaHNPOBAHWUN MHCTPYKLUMIA, YNIOPSA0HNBAHNN BIYMCIIEHWUIA SYEEK
dopmMmynbl Mpu nepecyeTe 3HaYeHUN OPMyN B 3MEKTPOHHbIX Tabnuuax, forM4eckom
CUHTEe3e, onpeaeneHnn nopsiaka sagad KoMnusiLvm, BoliMosHsieMbIX B dparnax make, cepyanmsaumm AaHHbIX U paspeLLeHmm
CUMBOJIbHbIX 3aBUCMMOCTEN B KOMMOHOBLLMKAX.

HemoHcTpaumio n obbsacHeHne paboTsl anroputma Topological Sort of DWAG MOXHO NOCMOTpeThb Ha https://youtu.be/el -
KzMXSXXI
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3.5.4.2. SPT for DWAG.
AnropuTtm.

1. Tononoruyecku otcoptuposatb DWAG;
2. yCTaHaBMWTb pacCTOsiHUE A0 UCTOYHMKA paBHbIM O 1 6ECKOHEYHOCTb 40 BCEX OCTarlbHbIX BEPLUMH;
3. ANg Kaxaoun BepLUMHbI N3 CNMCKa NPOXOAMM BCEX ee coceien U NpoBepsieM KpaTyanllmm nyThb;

AJ'IFOpI/ITM O4YeHb NOXO0X Ha anropnTm ﬂ,eﬁKCprl c ToMN pa3HI/ILl,el7I, YTO TOrga Mbl UCnonb3oBasin NPUMOpPUTETHYHO o4epeb, a Ha
9TOT pa3 Mbl nCnosnb3oBasun Crncok n3 TOMONOrN4YeCcKon COPTUPOBKW.

Mpumep.

Hwxe, pucyHok (b) - aTo NnMHenHoe NpeacTaBneHne pucyHka (a).

(a) (b)
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Korga Yy Hac eCTb TOMONOrN4YecKknin nopAnokK (I/IJ'II/I NUHEeNnHoe ﬂpe,El,CTaBﬂeHI/Ie), Mbl nocnegoBaTesibHO o6pa6aTb|BaeM BCe
BEpPLUMHbI B TONOJIOTMYECKOM NopdAaKe. Ons kaxagown o6pa6aTb|BaeM017| BEpPLUNHbI Mbl obHoBNsSIEM paccTtoaHuna o coceHen
BEPLLUNHbI, NCMNOJIb3yA pacCToAdAHUE 40 TeKyLLI,eVI BEepPLUNHDbI.

(h)

Bobixoa: KpaTyanwme pacctosiHus oT uctodHuka 1.0265 3
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3.5.5. CnoxHocTb anroputmoB SPT.

3.5.5.1. CnoxHocTb anroputMa [JeMKCTpbI 3aBUCUT OT cnocoba HaxoxaeHus bnvkanilen BepLmHbI, OT crnocoba XpaHeHus

MHOXXECTBa He NOCELLEHHBLIX BEPLUMH M cnocoba 06HoBMeHNst MeTok. OB603Haumm yepes V KonmMyecTBO BEPLLUMH, a Yyepe3 E —

KonmdecTBo pébep B rpacde. Pasmewats B namsAtn Tpebyetcs nopsgka O(VA2) gaHHbIX, OCHOBHasi CHOXHOCTb — 3TO

KONMMYeCTBO CPaBHEHUI 1 penakcauun.

1. B npoctenwem cnyyae npu peanusaluuM Ha MaTpuLe CMEXHOCTWU, Korda Ans noucka BePLUUMHbI C MUHUMAambHbIM
KONMYECTBOM MPOOHBIX NyTel NpoCMaTpuBaeTCs BCE MHOXECTBO BEPLUMH, BpeMsi paboTbl anropuTtma MMeeT MopsaoK
O(VA2+E*V). OcHOBHOWM UMKIT BbINOMHSIETCA nopsaka V pas, B KaKOOM U3 HMX Ha HaxOXAeHUe MWHMMyMa TpaTuTCs
nopsigka V onepauui, NOC KONMMYECTBO pernakcaumi (CMeH METOK), KOTOpOe He npeBocxoauT konudecTtea pebep E B G.

2. [nsa pa3peXEHHbIX rpadioB (TO eCTb TaKMX, AN KOTOPbIX E MHOro meHbLue VA2) He NoceLLéHHbIE BEPLUMHBLI MOXHO XPaHUTb
B ABonYHOM Ky4ye (heap) H, a B kayecTBe kntova ncnonb3oBaTtb 3HaveHus d[i], Toraa Bpemsi n3BnevyeHnst BepLumHol ns H
ctaHeT logV, npn Tom, yTo Bpems moamndukauum di] BospacTteT Ao logV. Tak kak uukn BelinonHAeTcHa nopsaka V pas, a
KOnn4yecTBO penakcaumin He 6onblue E, ckopocTb paboTel Takon peanusauun O(V*logV + E*logV).

3. Ecnu gns xpaHeHus He NOCELLEHHBLIX BEPLUMH NCMOMNb30BaTh hnboHaY4IMeEBY Ky4y, O KOTOPOW yaarneHne npovCcXoauT B
cpegHem 3a O(logV), a ymeHblUeHWe 3HayeHuns B cpegHem 3a O(1), To Bpems paboTbl anroputma coctasut O(V*logV+E).

3.5.5.2. CnoxHocTb anroputma ®nonga - Tpebyet O(VA3) BpemeHu ans paboThbl.
3.5.5.3. CnoxHocTb anroputma bennmaHna-®oppaa - Tpebyet O(V*E) BpemeHn ona paboTbl.

3.5.5.4. CnoxHocTtb SPT for DWAG. CnoXHOCTb TOMOJIOMTMYECKON COPTMPOBKN MO BpemeHu coctaenset O(V+E). MNocne
onpeaeneHns TOMosIorMYecKkoro nopsigka anroputm obpabartbiBaeT BCe BEPLUMHBLI U AN KaXXO0W BEPLUNHBI BbIMOSTHAET LMK
0N BCEX CMEXHbIX BepLumH. ObLee KonM4ecTBO CMEeXHbIX BeplwnH B rpade pasHo O(E). Taknm o6pa3om, BHYTPEHHUIA LINKIT
BbinonHsetcs O(V+E) pas. CnegoBarternbHo, 00Las BpeMeHHas CroXXHOCTb 3Toro anroputma coctaensieT O(V+E). MNpobnema
TONbKO B TOM, YTO Mbl JOJDKHbI ObITb YBEPEHbBI, YTO Ha rpade HeT LMKIIOB.

BbiBoA. Tak kak Ha NpakTuke obbl4HO V<<E M BO3MOXHbl LMKIbI, TO anroputM OenKCcTpbl MMeeT Ny4llytlo UM CpaBHUMYIO
OLIEHKY BpemeHu paboTbl MO CPaBHEHWIO C OCTamnbHbIMU anroputmamu, noatomy B OSPF kpatyaiwuii nyTb MLLeTcs
pacnpeenéHHo B KaXdoi BepLUMHe C NpUMeHeHeM anroputMa [denkcTpbl.
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3.6. MAXIMAL FLOW FINDING.

The Maximal Flow Problem (MaxFlow) in the network is to find such a flow
through the transport network that the sum of flows from the source, or, which is
the same, the sum of flows to the sink, is maximum.

3.6.1. MinCut algorithm of MaxFlow.

1.
2.
3.
4

Example. For the graph in the figure, we get MinCut=MaxFlow=25:
14+10+11=35; 14+10+0+12=27; 14+1+2+0+12=29; 14+1+2+0+0+8=25; 14+1+3+5+8=31;
14+4+5+8=31; 14+13+7+8=42; 14+13+15=42.

3.6.2. Maximal Flow Problem solution history.

Cut off the source vertex from the original graph G, get the area U, calculate
the total input flow F* through the section U (the weight of the input edges).
Sequentially cut off the next vertex and re-calculate the potential flow F*
Stop if only the stock top remains in U.

The minimum of the found sum F* will be the value of Max Flow.

In 1951, George Bernard Dantzig (1914-2005) first formulated the problem in general terms.
Danzig is an american mathematician, known as the developer of the algorithm used in
solving problems using the simplex method. Considered the founder of linear programming,
along with Leonid Kantorovich and von Neumann.

In 1956, Lester Ford and Delbert Ray Fulkerson first built an algorithm specifically designed to solve this problem. Their
algorithm is called the Ford-Fulkerson algorithm.

In the future, the solution of the problem was improved many times.

In 2010 Jonathan Kelner, Aleksander Madry, Daniel Spielman and Shang-Hua Teng found another algorithm improvement
for the first time in 12 years.
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3.6.3. Comparison of the efficiency of algorithms for finding the MaxFlow.

https://en.wikipedia.org/wiki/Maximum_flow_problem

« Anroputm ®opaa — ®ankepcora (1956) — O(nmU).

° n - number of vertices, « Anroputm 3amoHaca — Kapna, KpaTyailmx ysenuymMsalomxca uenei (1969) — O(nmz).
m - number of edges, « Anroputm [uHuua (1970) — O(n’m).
U - the Iargest value of the maximal « Anroputm OamMoHaca — Kapna, nokanbHo-MakCUManbHoro ysenuyenuna (1972) — O(m2 log U).
network throughput. « Anroputm uHuua 2 (1973) — O(nmlogU).

« Anroputm KapaaHosa (1974) — O(n®).

« Anroputm Yepkackoro (1977) — O('n2 Jm).

« Anroputm ManxoTpsl — Kymapa — Maxewsapm (1977) — O(n3).

« Anroputm Fanuna (1980) — O(n5/3m2/3).

« Anroputm Fanvna — Haamapa (1980) — O(nmlog® n).

« Anroputm Cneiitopa — Tapbaha (1983) — O(nmlogn).

« Anroputm Faboy (1985) — O(nmlogU).

« Anroputm Fona6epra — Tapbaxa (1988) — O(nmlog (n?/m)).

« AnropuTi Axsioa — OpnuHa (1989) — O(nm + n? log U).

« Anroputm Axbioa — OpnuHa — Tapbana (1989) — O(nmlog (n/TU/(m + 2))).
« AnropuTm Kukra — Pao — Tapbana 1 (1992) — O(nm + n?*€).

« Anroputm KuHra — Pao — TapbaHa 2 (1994) — O(nmlogm/nhgn n).

« Anroputm Yepuaxa — Xeiimkpana — Mexnxopha (1996) — O(n? / logn).

« Anroputm Fonp6epra — Pao (1998) — O(min{n*?,m!/?}mlog(n®/m)logU).
« Anroputm Kéntepa — Moxapsl — Criunmana — Tewa (2010) — O(nm'/%e1V/3 log® (nm!'/3¢11/3)).
« Anroputm OpnuHa 1 (2012) — O(nm).

« Anroputm OpnuHa 2 (2012) — O(nz/ logn), ecnu m = O(n).
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4. EXAMPLE OF A POSSIBLE TASK IN THE SPF TREE BUILDING FOR EXAM.

4.1. GIVEN.

e + The graph (network topology and link costs) is defined by an adjacency matrix.
e - Initial vertex s=A (or B,.., or J).

C|DIE[F|G|H]|I |J
9

A
0
3 7

= O|W

[(e]
NN O~

4
2

2
0

N[O

N
D

ST IIOmMMmo|O|m| >
N

w
N
Oo|N

4.2. EXERCISE.

Build the initial network graph.

Construct an SPF Tree using the Dijkstra algorithm for node s (any vertex).
Draw a table showing the step-by-step work of the Dijkstra algorithm.

List the shortest paths from vertex s to the rest of the vertices.

hwN =
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4.3. SOLUTION.

1. The original graph is shown in the figure above.
2. SP Tree from node s=A built by Dijkstra's algorithm is shown at the bottom of the figure.

O

©
(4] @ 0 ©o
(F)=—=(1)
e
(1)
()

0.,90-010,0
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3. Table of step-by-step work of the SPT Dijkstra algorithm.

Step Set of visited Cost labels and the path of connection of vertex s=A with vertices

i vertices B C D E F G H | J
0 {A} 3 - 9 - - - - - -
1 {A,B} (3) 4 9 7 - 10 - -
2 {A,B,C} 3 4) 6 6 - 10 - -
3 {A,B,C,D} 3 4 (6) 6 - 10 - - -
4 {A,B,C,D,E} 3 4 6 (6 10 10 8 - -
5 {A,B,C,D,E,H} 3 4 6 6 10 10 (8) 9 -
6 {A,B,C,D,E H,I} 3 4 6 6 10 10 8 9) 18
7 {A,B,C,D,E H,IG} 3 4 6 6 10 (10) |8 9 14
8 {A,B,CD.EH,IGF} |3 4 6 6 (10) 10 8 9 14
9 {A,B,C.D.EH,IG,FJ} |3 4 6 6 10 10 8 9 (14)

4. List of shortest paths.

A>A =A =0

A->B =AB =3

A->C =ABC =4

A->D =ABCD =6

A>E =ABCE =6

A->H =ABCEH =8

A->l =ABCEHI =9

A->F =ABCEF =10

A>G =ABG =10

A>J =ABGJ =14
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5. NETWORK TOPOLOGY VARIANTS.

Variant 1.

Variant 2.
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Variant 3.

Variant 4.
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Variant 5.

Variant 6.
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Variant 7.

Variant 8.
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Variant 9.

Variant 10.
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